
JUICER: Data-Efficient Imitation Learning for Robotic Assembly
Supplementary Materials

Lars Ankile1,3, Anthony Simeonov2,3, Idan Shenfeld2,3, Pulkit Agrawal2,3
1Harvard University, 2Massachusetts Institute of Technology, 3Improbable AI Lab

APPENDIX

A. Implementation Details

1) Training Hyperparameters: We present a comprehensive set of hyperparameters used for training. Hyperparameters
shared for all models are shown in Table I, hyperparameters specific to the diffusion models in Table II, and hyperparameters
specific to the MLP baseline in Table III.

TABLE I: Training Hyperparameters Shared for All Models

Parameter Value

Control Mode Position
Action Space Dimension 10
Observation Space Dimension 16
Orientation Representation 6D
Max LR 10−4

LR Scheduler Cosine
Weight Decay 10−6

Warmup steps 500
Batch Size 256
Max Epochs 400
Steps per Epoch 400
Image Size Input 2× 320× 240× 3
Image Size Encoder 2× 224× 224× 3
Vision Encoder Model ResNet18
Encoder Weights ImageNet 1k
Encoder Parameters 2× 11 million
Runs per Condition 5
Encoder Feature Projection Dim 128

TABLE II: Diffusion Model Hyperparameters

Parameter Value

U-Net Down dims [256, 512, 1024]
U-Net Parameters 69 million
Policy total parameters 91 million
Observation Horizon To 1
Prediction Horizon Tp 32
Action Horizon Ta 8
DDPM Training Steps 100
DDIM Inference Steps 8

TABLE III: MLP Baseline Hyperparameters

Parameter Value

Residual Blocks 5
Residual Block Width 1024
Parameters 10 million
Policy total parameters 32 million
Observation Horizon To 1
Prediction Horizon Tp (Chunked) 32
Action Horizon Ta (Chunked) 8
Prediction Horizon Tp (No Chunking) 1
Action Horizon Ta (No Chunking) 1

2) Normalization: All 10 and 16 dimensions of the action and proprioceptive state, respectively, were independently
normalized to lie in the range [-1, 1]. The normalization limits were calculated across all the demonstration data across all
4 tasks to ensure consistent action and state spaces across tasks. This follows the normalization used in, e.g., [1], [2] and is
also the generally accepted normalization used for diffusion models. [1] standardized the input to have mean 0 and standard
deviation 1 instead of min-max scaling to [0,1], which is something we did not test in our experiments.

3) Rotation Representation: We represent all orientations and rotations with the 6D representation, both for the predicted
action and proprioceptive end-effector pose orientation [3], [4]. The end-effector rotation angular velocity was still encoded
as roll, pitch, and yaw values. This representation of rotations contains redundant dimensions but is continuous in that small
changes in orientation also lead to small changes in the values in the representation, which is not generally the case for
Euler angles and quaternions, which can enable easier learning.

4) Image Augmentation: We apply image augmentation to both images during training. We apply random cropping only
to the front camera view. In addition, we apply color jitter with hue, contrast, brightness, and saturation set to 0.3 and
Gaussian blur with a kernel of size 5 and sigma between 0.1 and 5 to both camera views.

At inference time, we statically center-crop the front camera image from 320 × 240 to 224 × 224 and resize the wrist
camera view with the same dimensions. For both the random crop and center crop, we resize the image to 280 × 240 to
ensure we are not moving the image around so much that essential parts of the scene are cropped out.

The specific choice of the above values was made by eye to find a level that was sufficiently adversarial while still keeping
all essential features discernible. We show examples of augmentations below.

Fig. 1: Left: Examples of augmentations of the wrist camera view, consisting of color jitter and Gaussian blur. Right:
Examples of augmentations for the front view also consist of color jitter and Gaussian blur augmentations, as well as
random cropping.

B. Data Collection, Training, and Evaluation Details

The full pipeline for training the final models with JUICER involved several steps and different code files. In the below
list, we give a brief summary of the steps on a high level and what files the relevant code and command-line arguments are
found in. Please follow the installation instructions in the code repository (github.com/ankile/imitation-juicer) to ensure all
required packages are installed.

1) Teleoperation Demonstration and Annotation Effort: In Table IV, we present the approximate time the teleoperator
spent collecting and annotating 50 demos for each of the 4 tasks in this work. The labeling time includes all time spent
on the labeling task, i.e., all idle time resulting from waiting for files to load and write and any mistakes that were undone
and redone. Particularly, the loading of the data took a meaningful amount of time, and the whole process could be made
significantly faster by optimizing the read-write speeds (which we did not do).

TABLE IV: Approximate Demo Collection and Annotation Times in Minutes

Task Critical States Collect 50 Demos (min) Annotate 50 Demos (min)

one leg 1 ∼70 ∼10
round table 3 ∼85 ∼20
lamp 5 ∼95 ∼30
square table 4 ∼210 ∼30

2) Simulator Teleoperation Assistive Improvements: One crucial difficulty with collecting data in a simulator is the lack
of depth perception. This impediment is, on the surface, very limiting. However, two things helped alleviate the difficulties.
First is our experience that the brain is quite adaptable and very readily learned to rely on cues other than depth to infer
the relative positions of objects in the depth direction (presumably shadows and relative sizes). Second, we added a “laser

https://github.com/ankile/imitation-juicer

light” that protrudes out from the end-effector that more explicitly indicates the position and orientation of the end-effector
in the scene, as shown in Figure 2.

Fig. 2: The red light is added as a visual aid for the teleoperator to help alleviate the difficulties introduced by the lack of
depth perception. The red line is only visible to the operator and is not rendered to the image observations that are stored
while teleoperating. In the image, in the absence of the line, it is quite hard to tell if the end-effector is placed right above
the tabletop or not. With the red line, however, it becomes much more obvious.

3) Dataset Sizes Across Tasks and Methods: This section details more about what mix of data from the different sources
the different models across normal behavior cloning (BC), trajectory argumentation (TA), Collect-Infer (CI), and a mix of
all of them for the models for which we report results in the main results figure and Table VI.

TABLE V: Dataset Size for Task and Method

Teleop Rollout Augmentation

Task Method Demos Timesteps Demos Timesteps Demos Timesteps Total Timesteps

one leg BC 50 29k – – – – 29k
Traj. Aug 50 29k – – 50 3k 32k
Col. Inf. 50 29k 50 27k – – 56k
TA + CI 50 29k 50 27k 150 8k 64k

round table BC 50 47k – – – – 47k
Traj. Aug 50 47k – – 500 12k 59k
Col. Inf. 50 47k 50 55k – – 102k
TA + CI 50 47k 50 55k 700 17k 119k

lamp BC 50 42k – – – – 42k
Traj. Aug 50 42k – – 100 5k 47k
Col. Inf. 50 42k 50 45k – – 87k
TA + CI 50 42k 50 45k 200 10k 97k

square table BC 50 130k – – – – 130k
Traj. Aug 50 130k – – 150 8k 138k
Col. Inf. 50 130k 50 126k – – 256k
TA + CI 50 130k 50 126k 400 22k 278k

C. Results in Tabular Form

In Table VI, we present the same results as in the main results table, but in tabular form with the exact numbers.

TABLE VI: Main Results Table

Task One leg Round table Lamp Square table

Method Avg Max Avg Max Avg Max Avg Max

MLP-NC 0 0 0 0 0 0 0 0
MLP-C 40 52 9 15 3 4 4 9
DP-BC 59 68 18 21 6 7 6 9
State noise [5] 64 70 12 19 6 11 13 16
Traj. Aug. 64 65 28 31 8 12 9 17
Col.-Inf. 75 79 24 27 18 29 12 20
TA & CI 74 85 32 35 28 30 15 17
Multi-task 58 67 25 34 12 18 7 10

D. Further Analysis

1) Data Efficiency: In Figure 3, we see how the performance for the one leg task changes with increasing demo dataset
size. We calculate success rates for policies trained with [10, 20, 30, 40, 50, 100, 200, 300, 500, 1000] demos. We find the
success rate to follow an exponential curve closely up to 1000 demonstrations but seems to saturate at around ∼300-500
demonstration trajectories in the training data.

1e1 3e1 1e2 3e10 1e3
Number of Episodes

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s R

at
e

Success Rate by Number of Demonstrations

Average Success Rate
95% Confidence Interval

Fig. 3: Data efficiency graph for the ‘one leg‘ task.

2) Number of Denoising Steps in DDIM Sampler: In Figure 4, we present histograms over samples of actions for a given
state observation for different numbers of DDIM inference sampling steps of 1, 2, 4, and 100. In particular, we chose an
arbitrary state during the one leg task (the robot was grasping a leg and close to the point of insertion in this example).
We sampled 1000 random Gaussian noise vectors that we fully denoised using the DDIM sampler with the given number
of denoising steps.

In each of the four figures in Figure 4, we show the distribution as a histogram for each action independently, here as
delta actions for the 3D position and rotation as roll, pitch, and yaw. The 8th action distribution is the gripper action. These
representations are used in this analysis because it is easier to intuitively interpret than the absolute position actions and 6D
rotation representations.

We observe that the distributions converge quickly to the “final” distribution with the number of denoising steps. After 4
steps, it is already hard to distinguish the resulting distribution from the one using 100 steps.

(a) Action prediction using 1 DDIM sampling step. (b) Action prediction using 2 DDIM sampling steps. The
samples are already getting relatively good.

(c) Action prediction using 4 DDIM sampling steps. The
samples are very hard to distinguish from the predictions using
100 DDIM steps.

(d) Action prediction using 100 DDIM sampling steps.

Fig. 4: Comparison of samples of predicted actions for the same state with a varying number of DDIM sampling steps. The
four plots show the resulting prediction sample histograms for 1000 action samples with 1, 2, 4, and 100 DDIM sampling
steps, respectively. Each of the 8 histograms in each of the 4 subplots shows the distribution for a specific dimension of the
action space: [∆x,∆y,∆z,∆roll,∆pitch,∆yaw, gripper-width]. Increasing the sampling steps from 1 to 2 produces a vast
difference in the distribution, but further increases do not change the predicted action distributions much.

3) Ratio of Synthetic to Demonstration Data: The optimal number of synthetic trajectory snippets was not a question of
more being necessarily better, and we experimented with different ratios. Across our tasks, we typically got the best results
with the augmentation timesteps constituting somewhere between 8-20% of the total number of timesteps in the training
data (see Table V).

4) Importance of Action-Chunking: In our experiments with implementing the baseline MLP model, we see a drastic
difference in performance between the same architecture trained to predict the next action Tp = 1 versus ones trained to
predict a chunk Tp = 32. In particular, not a single full task completion was observed for any rollout for any of the 5
models trained for any of the 4 tasks. Qualitatively, when observing the rollouts, the behavior is also a lot more erratic and
less smooth with a prediction horizon of 1.

5) Comparison of Different Vision Encoders: We found a standard ResNet [6] from the torchvision package with
the IMAGENET1k [7] pretraining weights to work better than both the same ResNet with no pretraining and the ResNet
with the spatial softmax pooling layer from Robomimic [8] that was used in [2]. We also see very similar performance
when using a Vision Transformer [9] model ViT-Small with Dino V1 weights [10], a ViT-Base with pertaining weights from
pertaining on ImageNet with the MAE [11] objective and a ResNet50 with weights from pertaining on the Ego4D [12]
dataset with the VIP [13] objective. The best-performing model, though, was a ResNet18 with pertaining weights from the
R3M [14] objective on the Ego4D dataset, achieving an average success rate of 77% for the one leg task versus 59% for
the ResNet18 pretrained on ImageNet. Surprisingly, the R3M models using the ResNet 34 and 50 performed slightly worse
than the ResNet18.

Results for the one leg tasks for different vision encoder architectures and pretrained weights are summarized in
Table VII.

TABLE VII: Comparison of Vision Encoder Success Rates on the one leg task

Model Training Objective Supervision Pretraining Dataset Success Rate

ResNet18 [6] Classification Supervised ImageNet [7] 59%
ResNet18 No Pretraining — — 49%
ResNet18 (Spatial Softmax) [15] No Pretraining — — 30%
ViT-Small [9] DINO [10] Self-supervised ImageNet 55%
ViT-Base MAE [11] Self-supervised ImageNet 63%
ResNet18 R3M [14] Self-supervised Ego4D [12] 77%
ResNet34 R3M Self-supervised Ego4D 75%
ResNet50 R3M Self-supervised Ego4D 73%
ResNet50 VIP [13] Self-supervised Ego4D 54%

6) Empirical Mode Sampling: During development, we observed that the model can sample actions in low-density parts
of the distribution, which could be actions that take the agent out of the distribution, causing a failure. One interesting
finding is that as soon as the model was OOD, it tended to widen its action prediction distributions by approximately 10
times.

In experiments with forcing the model to sample only actions near the mode, we implemented a simple Kernel Density
Estimation method for estimating the mode of an empirical distribution over a sample of continuous actions. In our experience,
this did not improve success rates for the preliminary experiments on one leg.

These experiments were carried out before reading the results of [16]. We hypothesize that one of the reasons we did not
find KDE mode sampling to help in our case is that our joint action-chunk space is of |a| · Ta = 10 · 8 = 80 dimensions,
which can be a very sparsely populated space, even with 5000 samples. This is subject to further investigations in future
work.

REFERENCES

[1] M. Reuss, M. Li, X. Jia, and R. Lioutikov, “Goal-Conditioned Imitation Learning using Score-based Diffusion Policies,” June 2023, arXiv:2304.02532
[cs]. [Online]. Available: http://arxiv.org/abs/2304.02532

[2] C. Chi, S. Feng, Y. Du, Z. Xu, E. Cousineau, B. Burchfiel, and S. Song, “Diffusion Policy: Visuomotor Policy Learning via Action Diffusion,” June
2023, arXiv:2303.04137 [cs]. [Online]. Available: http://arxiv.org/abs/2303.04137

[3] Y. Zhou, C. Barnes, J. Lu, J. Yang, and H. Li, “On the continuity of rotation representations in neural networks,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019, pp. 5745–5753.

[4] J. Levinson, C. Esteves, K. Chen, N. Snavely, A. Kanazawa, A. Rostamizadeh, and A. Makadia, “An analysis of svd for deep rotation estimation,”
Advances in Neural Information Processing Systems, vol. 33, pp. 22 554–22 565, 2020.

[5] L. Ke, J. Wang, T. Bhattacharjee, B. Boots, and S. Srinivasa, “Grasping with Chopsticks: Combating Covariate Shift in Model-free Imitation
Learning for Fine Manipulation,” in 2021 IEEE International Conference on Robotics and Automation (ICRA). Xi’an, China: IEEE, May 2021,
pp. 6185–6191. [Online]. Available: https://ieeexplore.ieee.org/document/9561662/

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image database,” 2009 IEEE conference on
computer vision and pattern recognition, pp. 248–255, 2009.

[8] A. Mandlekar, D. Xu, J. Wong, S. Nasiriany, C. Wang, R. Kulkarni, L. Fei-Fei, S. Savarese, Y. Zhu, and R. Martı́n-Martı́n, “What matters in learning
from offline human demonstrations for robot manipulation,” in arXiv preprint arXiv:2108.03298, 2021.

[9] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit,
and N. Houlsby, “An image is worth 16x16 words: Transformers for image recognition at scale,” 2021.

[10] M. Caron, H. Touvron, I. Misra, H. Jégou, J. Mairal, P. Bojanowski, and A. Joulin, “Emerging properties in self-supervised vision transformers,”
2021.

[11] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. Girshick, “Masked autoencoders are scalable vision learners,” 2021.
[12] K. Grauman, A. Westbury, E. Byrne, Z. Chavis, A. Furnari, R. Girdhar, J. Hamburger, H. Jiang, M. Liu, X. Liu, M. Martin, T. Nagarajan, I. Radosavovic,

S. K. Ramakrishnan, F. Ryan, J. Sharma, M. Wray, M. Xu, E. Z. Xu, C. Zhao, S. Bansal, D. Batra, V. Cartillier, S. Crane, T. Do, M. Doulaty,
A. Erapalli, C. Feichtenhofer, A. Fragomeni, Q. Fu, A. Gebreselasie, C. Gonzalez, J. Hillis, X. Huang, Y. Huang, W. Jia, W. Khoo, J. Kolar, S. Kottur,
A. Kumar, F. Landini, C. Li, Y. Li, Z. Li, K. Mangalam, R. Modhugu, J. Munro, T. Murrell, T. Nishiyasu, W. Price, P. R. Puentes, M. Ramazanova,
L. Sari, K. Somasundaram, A. Southerland, Y. Sugano, R. Tao, M. Vo, Y. Wang, X. Wu, T. Yagi, Z. Zhao, Y. Zhu, P. Arbelaez, D. Crandall, D. Damen,
G. M. Farinella, C. Fuegen, B. Ghanem, V. K. Ithapu, C. V. Jawahar, H. Joo, K. Kitani, H. Li, R. Newcombe, A. Oliva, H. S. Park, J. M. Rehg,
Y. Sato, J. Shi, M. Z. Shou, A. Torralba, L. Torresani, M. Yan, and J. Malik, “Ego4d: Around the world in 3,000 hours of egocentric video,” 2022.

[13] Y. J. Ma, S. Sodhani, D. Jayaraman, O. Bastani, V. Kumar, and A. Zhang, “VIP: Towards Universal Visual Reward and Representation via
Value-Implicit Pre-Training,” Mar. 2023, arXiv:2210.00030 [cs]. [Online]. Available: http://arxiv.org/abs/2210.00030

[14] S. Nair, A. Rajeswaran, V. Kumar, C. Finn, and A. Gupta, “R3M: A Universal Visual Representation for Robot Manipulation,” Nov. 2022,
arXiv:2203.12601 [cs]. [Online]. Available: http://arxiv.org/abs/2203.12601

[15] C. Finn, X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel, “Deep spatial autoencoders for visuomotor learning,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp. 512–519.

[16] T. Pearce, T. Rashid, A. Kanervisto, D. Bignell, M. Sun, R. Georgescu, S. V. Macua, S. Z. Tan, I. Momennejad, K. Hofmann, and S. Devlin,
“Imitating Human Behaviour with Diffusion Models,” Mar. 2023, arXiv:2301.10677 [cs, stat]. [Online]. Available: http://arxiv.org/abs/2301.10677

http://arxiv.org/abs/2304.02532
http://arxiv.org/abs/2303.04137
https://ieeexplore.ieee.org/document/9561662/
http://arxiv.org/abs/2210.00030
http://arxiv.org/abs/2203.12601
http://arxiv.org/abs/2301.10677

	Implementation Details
	Training Hyperparameters
	Normalization
	Rotation Representation
	Image Augmentation

	Data Collection, Training, and Evaluation Details
	Teleoperation Demonstration and Annotation Effort
	Simulator Teleoperation Assistive Improvements
	Dataset Sizes Across Tasks and Methods

	Results in Tabular Form
	Further Analysis
	Data Efficiency
	Number of Denoising Steps in DDIM Sampler
	Ratio of Synthetic to Demonstration Data
	Importance of Action-Chunking
	Comparison of Different Vision Encoders
	Empirical Mode Sampling

	References

